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Abstract

Epigenetic changes can occur due to extracellular environmental conditions. Conse-

quently, epigenetic mechanisms can play an intermediate role to translate environmen-

tal signals to intracellular changes. Such a role might be particularly important in

plants, which often show strong local adaptation and have the potential for heritable

epigenetic states. However, little is currently known about the role of epigenetic varia-

tion in the ecological mechanisms of adaptation. Here, we used multivariate redun-

dancy analyses to examine genomewide associations between DNA methylation

polymorphisms and climate variation in two independent panels of Arabidopsis acces-

sions, including 122 Eurasian accessions as well as in a regional panel of 148 acces-

sions in Sweden. At the single-nucleotide methylation level, climate and space

(geographic spatial structure) explain small yet significant amount of variation in both

panels. On the other hand, when viewed in a context of genomic clusters of methy-

lated and unmethylated cytosines, climate and space variables explain much greater

amounts of variation in DNA methylation than those explained by variation at the sin-

gle-nucleotide level. We found that the single-nucleotide methylation polymorphisms

with the strongest associations with climate were enriched in transposable elements

and in potentially RNA-directed methylation contexts. When viewed in the context of

genomic clusters, variation of DNA methylation at different sequence contexts exhibit

distinctive segregation along different axes of variation in the redundancy analyses.

Genomewide methylation showed much stronger associations with climate within the

regional panel (Sweden) compared to the global (Eurasia). Together, these findings

indicate that genetic and epigenetic variation across the genome may play a role in

response to climate conditions and local adaptation.
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Introduction

Epigenetic mechanisms determine how genomic DNA

is packaged and accessed in cellular environment, thus

affecting patterns of cell-type-specific gene expression.

It is increasingly recognized that substantial amounts of

epigenetic variation exist in natural populations (Heyn

et al. 2013; Moen et al. 2013; Schmitz et al. 2013).

Whether such epigenetic variability can be transmitted

across generations is currently under debate. In plants,

there are several well-characterized examples of herita-

ble transmission of epigenetic states across multiple

generations (Kalisz & Purugganan 2004; Johannes et al.

2009; Cortijo et al. 2014; Jiang et al. 2014). Heritable epi-

genetic variation may provide a mechanism for adap-

tive evolution in response to natural selection.

Furthermore, epigenetic variation determined by genetic
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variation may cause expression polymorphisms

involved in adaptation. However, little is currently

known about the role of epigenetic variation in the

ecological mechanisms of adaptation. Here we study

this topic by examining the association between

genomewide DNA methylation polymorphism

and local climates of natural ecotypes of Arabidopsis

thaliana.

DNA methylation is one type of epigenetic modifica-

tion whose state can be transmitted to offspring genera-

tions (Schmitz et al. 2011; Calarco et al. 2012). DNA

methylation varies across the genome as well as

between individuals in many taxa (Zilberman et al.

2006; Lister et al. 2008; Becker et al. 2011; Schmitz et al.

2011, 2013; Dubin et al. 2015). In particular, the

recently developed whole-genome bisulphite-sequen-

cing methodologies allow researchers to characterize

DNA methylation at the scale of single nucleotides.

Studies suggest that many single-nucleotide methyla-

tion polymorphisms (SMPs) and differentially methy-

lated regions (DMRs, regions of DNA that exhibit

multilocus polymorphism in levels of methylation) may

have underlying genetic determinants (Schubeler 2015).

At the same time, others appear entirely ‘epigenetic’,

that is their variation is largely independent of underly-

ing genetic mechanisms (Schmitz et al. 2013). Indeed, it

has been long postulated that epigenetic variation may

be caused by both genetic and environmental factors

(Liu et al. 2008).

Local adaptation to environment is widespread in

nature, although much remains unknown about the

genomic basis of local adaptation. For example, the spa-

tial scale of local adaptation is poorly known, that is

whether locally adaptive variants are geographically

widespread or narrowly distributed (Fournier-Level

et al. 2011; Lasky et al. 2015). Additionally, the role of

genomewide regulatory evolution in local adaptation is

little understood (Fraser 2013; Lasky et al. 2014). Local

adaptation is likely to be particularly common in plants,

as their migration is restricted to the seed stage (Her-

man et al. 2014), limiting their ability to avoid local

environmental stressors. Epigenetic variation may be

important in plant local adaptation, because epigenetic

mechanisms could rapidly translate regional environ-

mental conditions into potentially heritable changes at

the cellular level [Liu (2013), but see Hagmann et al.

(2015)]. Consequently, an emerging question is whether

and to what extent epigenetic variation is involved in

local adaptation to environmental conditions such as

climate. Using genomewide SMP data, we may begin to

assess how epigenomes interact with organismal envi-

ronments, which is critical in understanding to what

extent ecological factors contribute to epigenetic diver-

sity and ultimately evolution.

We investigate whether climate can explain epige-

netic variation in Arabidopsis thaliana by utilizing two

recently generated whole-genome methylation panels of

natural ecotypes sampled across Eurasia (Schmitz et al.

2013) and separately within Sweden (Long et al. 2013;

Dubin et al. 2015). As these data also include an analy-

sis of genomewide SNPs in the same accessions, we can

compare the relative association of climate with epige-

netic vs. genetic variation. We found that climate vari-

ables were statistically associated with a comparable

amount of epigenetic and genetic variation in these data

sets. The largest axis of methylation-climate association

was strongly linked to CHH methylated sites and con-

centrated in transposable elements. In contrast, CG

methylation associated with climate localized to genic

regions. Previous analyses of Arabidopsis have suggested

that local adaptation to climate may explain a substan-

tial portion of observed spatial genetic structure (Han-

cock et al. 2011; Lasky et al. 2012; Long et al. 2013). Our

results suggest that a substantial portion of natural epi-

genetic variation is also associated with climate and

may be involved in local adaptation to climate.

Materials and methods

Genome and epigenome data collection

We used two main epigenomic data sets of Arabidopsis

accessions in Europe. The first data set, hereafter

referred to as the ‘Eurasian panel’, is a collection of pre-

processed genomewide methylation maps for 140 Ara-

bidopsis thaliana accessions from Schmitz et al. (2013)

(NCBI GEO Accession no. GEO43857). The majority of

these methylation maps were generated from leaf tis-

sues, with a minority being from inflorescence tissues.

Whole-genome variant calls (compared to the Col-0 ref-

erence strain) from the same study were obtained from

the NCBI SRA database (Accession no. SRA012474). We

constrained our analyses to 122 Eurasian accessions

with well-defined site locations (Anastasio et al. 2011)

so that climate variables could be unequivocally

assigned to each accession. SMP analyses were

restrained to sites that had at least one site differentially

methylated among accessions after the binomial correc-

tion following Schmitz et al. (2013). We additionally

excluded sites that lacked methylation status for any

accession. This first filtering procedure changed the

original methylation composition of SMPs from 14%

CG, 16% CHG, and 70% CHH to 54% CG, 17% CHG

and 29% CHH, indicating that many differentially

methylated sites are found in CG context.

In the original Eurasian panel data set, approximately

3.5 million SNPs were segregating. To make computa-

tional analyses feasible, we first removed rare SNPs by
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filtering out sites with a minor allele frequency <5%. To

further reduce the number of SNPs and to avoid linked

sites, we then used PLINK (Purcell et al. 2007) to remove

sites with high linkage disequilibrium with other sites.

We used a sliding window of 100 sites with a maxi-

mum pairwise correlation of 0.5 and a step size of five

sites per sliding window, similar to previous studies

(e.g. O’Connor et al. 2015). We then used the same fil-

tering procedures (removing rare alleles and linked

sites) for SMPs to facilitate fair comparisons among data

sets. After these filtering steps, the SMP data set had

182 090 sites (62% CG, 6% CHG, 32% CHH) while the

SNP data set had 328 795 sites.

The second epigenomic data set, later denoted as

the ‘Swedish panel’, consists of whole-genome methy-

lation maps for 148 accessions from across Sweden

(Dubin et al. 2015). In this study, two groups of acces-

sions were raised at two different temperatures. We

selected accessions grown at 10 °C to utilize the lar-

ger sample size compared to the other and also

because it more closely reflects the growing season

conditions in this region (Lasky et al. 2012). The SMP

compositions of unfiltered data set were 9% CG, 16%

CHG and 75% CHH, suggesting some difference in

the standing level of CG methylation variation

between populations. After removing sites with static

methylation or missing data, the composition was

20% CG, 19% CHG and 61% CHH, indicating that

CG sites tend to be differentially methylated between

individuals, similarly to the observation from the Eur-

asian panel. After performing PLINK pruning as in the

Eurasian panel, the SMP data set included 162 544

sites (26% CG, 10% CHG, 64% CHH). Thus, in both

panels, DNA methylation at CG sites appears to be

highly variable across individuals, found in apprecia-

ble frequencies (>5%) and unlinked from other varia-

tion at CG sites. On the other hand, DNA

methylation variation at CHG and CHH sites was

reduced following the filtering steps. In addition,

there were significant differences at the initial level of

standing variation of DNA methylation at CG sites.

The causes of these patterns are currently unknown,

and with more population epigenomic data sets in

the future, we can address the robustness and signifi-

cance of such differences.

To directly compare variance explained by epigenetic

and genetic data in this panel, we also analysed a SMP

data set restricted to the 94 accessions from (Long et al.

2013) with accompanying genomic data from (Dubin

et al. 2015). In this restricted data set of 94 accessions,

the number of SMPs was 162 609 variable sites, while

the corresponding SNP data set had 304 720 sites. The

final list of accessions used is listed in Table S1 (Sup-

porting information).

Controlling for potential batch effects is an important

aspect of data analyses. The whole-genome bisulphite-

sequencing data used in this study were generated on

the next-generation sequencing platform, which is

known to be robust against batch effects, unlike

microarray-based platforms (Marioni et al. 2008). Con-

sequently, no classifier associated with potential batch

is provided with these data. Nevertheless, these data

included false-positive controls within each experiment.

For the Eurasian panel (Schmitz et al. 2013), the aver-

age nonconversion rate was 0.2%, while in the Swedish

panel (Dubin et al. 2015) it was 0.41%. Additionally,

Dubin et al. (2015) sequenced 11 biological replicates

and reported low variation across methylation con-

texts.

Identification of DMRs

We identified DMRs across the accessions following

Schmitz et al. (2013) prior to pruning. Briefly, we con-

ducted a sliding window analysis using a 100-base

window for DMRs comprised of CG, CHG and CHH

methylation sites (where H is any base other than G),

defined here as C-DMRs, and a 300 base window for

DMRs consisting of just CG sites (CG-DMRs). These

DMR types are often considered separately in geno-

mewide DNA methylation analyses due to their dis-

tinctive nature with respect to genomic locations and

contexts. For example, it was previously shown that

C-DMRs mainly localize to the repeat-rich cen-

tromeres and CG-DMRs to the more gene-rich interior

of chromosome arms (Schmitz et al. 2013). A prelimi-

nary DMR was called if at least 10 sites containing

single methylation polymorphisms (SMPs) within a

window had methylated and unmethylated accessions,

as determined by the DNA methylation binomial test

[a site was called methylated if it harboured a greater

number of methylated reads than expected under the

binomial distribution where the probability of failure

was the observed error rate due to incomplete bisul-

phite conversion (Lister et al. 2008)]. The fractional

methylation at each site was then used to calculate

whether accessions differed in methylation using a

Kruskal–Wallis test; accessions with <5 methylation

values in the preliminary DMR were excluded from

this calculation to avoid errors due to small sample

size (Kruskal & Wallis 1952). Preliminary DMRs were

joined if they were within 50 bases of one another;

the P-value of the joined DMRs was calculated using

Fisher’s method with the two previous P-values. We

then applied a 1% false-discovery rate (FDR) adjust-

ment to these DMRs (Benjamini & Hochberg 1995).

Finally, CG-DMRs overlapping with C-DMRs were

excluded.
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Climate data collection

We used publically available global climate data sets to

characterize the home environment of each accession

[locations taken from Dubin et al. (2015), Schmitz et al.

(2013)]. We primarily used data from WORLDCLIM, a data-

base with 30-arcsecond resolution (approximately 1

square kilometre) (Hijmans et al. 2005). WORLDCLIM is a

global weather map of average conditions from the

years 1950–2000, interpolated using data accumulated

from weather stations around the world. Monthly aver-

ages for precipitation as well as minimum, average and

maximum temperature were calculated for temperature.

WORLDCLIM also provides 19 additional climate variables

of biological importance derived from monthly condi-

tions, as well as altitude (Hijmans et al. 2005). We also

included two additional variables calculated using

WORLDCLIM data, annual total potential evapo-transpira-

tion (PET) and aridity index (annual precipitation/PET)

(Zomer et al. 2008).

Following Lasky et al. (2012), we calculated the grow-

ing season for each accession using the WORLDCLIM pre-

cipitation and temperature data (Walter & Leith 1960).

For each location, the growing season was defined as

the set of months with an average precipitation (mm)

that was greater than or equal to twice the average tem-

perature (Celsius), with the average temperature being

at least 4 °C. From these estimates, we calculated grow-

ing season length as well as mean precipitation, total

precipitation, mean temperature, minimum tempera-

ture, maximum temperature and the coefficient of varia-

tion for precipitation during the growing season.

As monthly temperature and precipitation estimates

are highly correlated, we considered these values by

quarter (January, April, July, October). This filtering

reduced the number of climate variables well below the

number of accessions analysed. We attempted several

further attempts at reducing model complexity, but the

overall significance remained similar.

Estimating spatial structure of Arabidopsis accessions

Genetic variation among accessions may be associated

with geographical distance, which we modelled using

principle components of neighbourhood matrices

(PCNM) (Borcard & Legendre 2002; Manel et al. 2010;

Lasky et al. 2012). PCNM are variables estimating dif-

ferent axes of spatial relationships among accessions,

from very large to very small scales, and allow for

modelling of nonstationary isolation by distance. First, a

distance matrix between locations was calculated using

the Vincenty Ellipsoid formula from the R ‘geosphere’

package. Second, a minimum-spanning tree (MST)

between locations was constructed using these dis-

tances. Distances between locations that were longer

than the maximum distance between points in the MST

were truncated to four times the maximum MST dis-

tance. Truncating distances in this fashion prevents the

eigenvector calculations from being dominated by long-

distance structure (Borcard & Legendre 2002).The prin-

ciple coordinates of neighbourhood matrix (PCNM) was

calculated using this threshold with the ‘pcnm’ function

implemented in the R package ‘VEGAN’ (Oksanen et al.

2015). After removing PCNM axes with negative eigen-

values, there were 61 variables used in the Eurasian

panel and 47 in the Swedish panel.

Statistical estimation of genetic and climate
associations

We estimated the amount of methylation (SMP or

DMR) and genetic (SNP) variation that could be

explained by climate and geography using redundancy

analysis (RDA) and variance partitioning, also imple-

mented in ‘VEGAN’ (Van Den Wollenberg 1977; Peres-

Neto et al. 2006; Oksanen et al. 2015). RDA is a regres-

sion technique that models the relationship between

multivariate predictors (here climate and spatial vari-

ables) and multivariate responses (here SMP, DMR or

SNP matrices). RDA can also partial out sets of explana-

tory variables, which allowed us to control for spatial

structure while modelling associations with environ-

ment as an effort to remove effects of geographic popu-

lation structure. RDA maximizes the amount of

variance in a linear combination of response variables

explained by linear combinations of explanatory vari-

ables. RDA is similar to principle components analysis

in that it is an eigenanalysis that produces orthogonal

axes of variation, referred to as canonical axes. We cal-

culated the portion of variance explained by climate

and by spatial variables, and the portion explained by

climate collinear with space.

In this study, we present results of analyses including

all 42 climate variables. Considering such similarities,

and unclear associations between different climate and

space variables, we decided to include all variables

without specific a priori exclusion of specific variables.

We also note that since RDA explicitly models similar

correlations between multiple predictors and the

response variables, predictors that are correlated in

such a manner load similarly on the resulting canonical

axes, as in PCA or other eigenanalyses.

Assessing significance of associations

We assessed the significance of the estimated variance

explained in response variables using permutations to

generate a null distribution of variance explained. We

© 2016 John Wiley & Sons Ltd

1826 T.E . KELLER, J .R . LASKY and S .V . YI



calculated empirical P-values by comparing the

observed variation explained to that explained by null

matrixes randomized by free permutation with the VE-

GAN function ‘anova.cca’ (Oksanen et al. 2015). The P-

value was then calculated as the proportion of 1000 ran-

dom matrices that had a higher variance explained than

the observed data.

To assess whether certain methylation contexts or

genomic regions were enriched for climate-associated

variation, we generated null distributions by circulariz-

ing the genome and then permuting the methylation

context (CG, CHH and CHG) or genomic context with

respect to gene annotation (e.g. intergenic, promoter,

gene body or transposable element) to a random posi-

tion in the data set. This procedure preserves the link-

age disequilibrium and order of the original data.

Empirical P-values were calculated as in the previous

analysis. The gene annotations were based off the

TAIR10 gene and transposable element locations

(Lamesch et al. 2011). Promoter regions were defined as

1500 bases upstream and 500 bps downstream of a tran-

scription start site (Zeng et al. 2012).

In our analyses, we observed that methylation con-

texts differed dramatically in how much genomewide

variation was explained by the first canonical climate

axis. This pattern suggests the dimensionality of geno-

mewide variation differs among methylation contexts.

To assess the significance of these patterns, we com-

pared the variance explained by the first canonical RDA

axis in null permutations to the variance explained by

the first canonical RDA axis in the observed data for

each methylation context. We used a one-tailed test to

estimate a P-value.

We calculated the proportion of variation explained

by a specific climate or spatial variable in an RDA as

Px, following (Lasky et al. 2012). Px was calculated as

the weighted sum of absolute correlations across all

canonical axes. Each absolute correlation was weighted

by the proportion of variation explained by a canonical

axis (e.g. the eigenvalue).

Gene ontology enrichment among climate-associated
loci

We tested whether climate-associated SMPs and DMRs

overlapped with genes that had specific functions by

performing gene ontology (GO) enrichment analyses

using AGRIGO (Du et al. 2010), using a hypergeometric

test and FDR correction under dependency (Benjamini

& Yekutieli 2001). For the top 1% climate-associated

SMPs, C-DMRs and CG-DMRs, we assembled a list of

genes with overlapping promoter or gene body regions.

This list of genes was compared against the Slim

TAIR10 set of genes for A. thaliana.

Analyses of gene expression

To understand the potential relationship between cli-

mate-associated methylation and gene expression, we

analysed RNA-seq data of the same accessions. RNA-

seq gene expression values were obtained from (Sch-

mitz et al. 2013) and Dubin et al. (2015). We used the

final estimates from both studies (FPKM and RPKM,

respectively). The numbers of accessions with matching

RNA-seq data sets are 107 (of 122) in the Eurasian

panel and 135 (of 148) in the Swedish panel. We

restricted this analysis to DMRs that uniquely mapped

to a single promoter or gene body region, and consid-

ered each region separately. We then calculated the

average absolute correlation between gene expression

and DMR methylation for each data set.

Associations between Gene 9 Environment effects and
climate

We also examined the correlation between methylation

and expression for a subset of genes that were identi-

fied to have strong Genetic 9 Environment (G 9 E)

effects in drought and cold conditions as measured by

gene expression differences (Des Marais et al. 2012;

Hannah et al. 2006; Lasky et al. 2014). For each data set,

we calculated the average squared loading for all DMRs

or SMPs that were within 10 KB of G 9 E genes. We

then compared the observed average with the 1000

bootstrap replicates containing the same number of ran-

dom loci as the observed data set.

Results

DNA methylation is associated with climate and
geography at the single-nucleotide level

We began using RDA to estimate how much genome-

wide variation in single-nucleotide polymorphisms

(SNPs) and single methylation polymorphisms (SMPs)

could be explained by climate and spatial variables in

the two panels. The results from the two panels revealed

intriguing similarities and differences (Table 1). First, in

the full model, climate and space explained 1% (in Swed-

ish panel, derived from Dubin et al. 2015) and 7.5% [in

Eurasian panel, derived from Schmitz et al. (2013)] of

total genetic variation (SNP), respectively. The amount of

genetic variation explained by climate and space is much

lower than what was previously observed in a larger

panel of accessions (Lasky et al. 2012). Nevertheless, the

effects of climate and space are significant in this model.

Interestingly, the amount of total genomewide epige-

netic variation (SMP) explained by climate and space

was of a similar order to that for genetic variation. For
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example, in the Eurasian panel, climate and space

explained 2.5% of total SMP variation, while in the

Swedish panel it was 5% (Table 1). When we accounted

for spatial structure by conditioning the model on

PCNM variables, the amount of variation explained by

climate decreased two- to threefolds in both data sets.

An exception was CHG SMPs in the Eurasian panel, for

which the portion explained by climate declined an

order of magnitude (3.1–0.32%) in the space-adjusted

model compared to the full model.

Aside from these similarities, the explanatory power

of climate variables varied greatly between the two data

sets. In the Eurasian panel, all climate variables became

nonsignificant (P > 0.05) when we partialled out effects

of the spatial variables. In contrast, the comparable

models using the Swedish panel generally remained

highly significant (Table 1). The relative explanatory

power of individual climate variables (Px, see Methods)

also varied between data sets (Table 2). The climate

variables with the highest Px were generally related to

temperature in the Eurasian panel and precipitation in

the Swedish panel (Table 2). The sample sites and gra-

dient of the strongest climate variable for each panel

are shown in Fig. 1.

The number of climate or spatial variables does not
strongly affect explanatory power

We examined reduced data sets to explore whether

we could reduce the complexity of the data. How-

ever, the variance explained by the reduced data sets

was generally similar to the variance explained by the

full data set. For example, the adjusted R2 in the Eur-

asian data set explained by climate and space was

0.025 with all 42 climate variables, remaining 0.025

when only considering 36 WORLDCLIM variables, and

finally declining slightly to 0.020 when only consider-

ing altitude and the 19 nonmonthly WORLDCLIM vari-

ables.

We also experimented with the effect of reduced spa-

tial variables. The explanatory power of the statistical

models remained similar in the Eurasian panel; the

adjusted R2 of the full model changed by only 0.001

when reducing the PCNM variables from 61 to the first

40, and by 0.002 when they were reduced to the first

20. Similarly, in the Swedish panel, the adjusted R2

changed by 0.001 when reducing the PCNM variables

from 47 to 35, and 0.004 when there were 25 PCNM

variables.

Table 1 Single-nucleotide methylation polymorphism (SMP) and SNP variation explained by redundancy analysis (RDA). Adjusted

R2 and significance are reported for both a full model (climate + space) and a model of climate independent of space (climate |
space). These models were implemented with the VEGAN R package. Significance was calculated as the proportion of 1000 permuted

null data sets that exceed the observed variance explained. The Eurasian data set was comprised of 122 SMP and SNP samples while

the Swedish data set had 148 SMP samples and 94 SNP samples

Data sets Response variables

Full Model Space-adjusted Model

(Climate + Space)

Adj. R2 P-valueAdj. R2 P-value

Eurasian panel

Schmitz et al. (2013)

SMP 0.025 0.023 0.010 0.335

SNP 0.074 0.001 0.034 0.115

CG SMP 0.033 0.001 0.021 0.214

CHG SMP 0.031 0.058 0.003 0.432

CHH SMP 0.011 0.393 0.000 0.589

Genebody 0.031 0.001 0.019 0.244

Intergenic 0.008 0.385 0.000 0.600

Promoter 0.024 0.039 0.009 0.378

Transposon 0.017 0.348 0.000 0.583

Swedish panel

Dubin et al. (2015)

Long et al. (2013)

SMP 0.076 0.001 0.046 0.001

SNP (94 samples) 0.010 0.253 0.014 0.276

SMP (94 samples) 0.050 0.001 0.030 0.075

CG SMP 0.117 0.001 0.067 0.001

CHG SMP 0.103 0.001 0.063 0.001

CHH SMP 0.050 0.001 0.034 0.002

Genebody 0.097 0.001 0.058 0.001

Intergenic 0.094 0.001 0.056 0.001

Promoter 0.116 0.001 0.067 0.001

Transposon 0.045 0.001 0.031 0.001
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Climate and space explain more DMR variation than
SMPs independently

We then examined how DMRs vary with climate and

space using RDA (Table 3). In the Eurasian panel,

C-DMRs had an average length of 212 (�1.4 [SE]) bases

and covered 6.1% of the genome. A substantial amount

of variation (6.5%) at C-DMRs was explained by climate

and space in this panel (P = 0.002). DMRs in a CG con-

text, CG-DMRs, were on average longer than C-DMRs

(292 (�1.0 [SE]) bases) and occupied 5.9% of the gen-

ome. Similarly, a substantial amount of variation of

DNA methylation (4.7%) at CG-DMRs was explained

by climate and spatial variables (P = 0.01).

In the Swedish panel, C-DMRs tend to be longer than

observed in the Eurasian panel (average of 428 (�2.1

[SE]) bps compared to 212 bps (�1.8 [SE]) in the latter

panel) and also occupy a much greater portion (22%) of

the genome. In contrast, CG-DMRs in the Swedish

panel are of similar lengths to those in the Eurasian

panel (average length of 287 (�2.1 [SE] bps) but occupy

much shorter regions of the genome (0.4%). This differ-

ence may be partially due to the less frequent polymor-

phic CG methylation relative to the total number of

SMPs in the Swedish panel (2.02 vs. 2.97 million sites,

13% vs. 31% of total SMPs in the Swedish and the Eura-

sian panels, respectively). We found that climate and

space explain a substantial amount of variation of DNA

methylation in DMRs (16% and 18% for C-DMR and

CG-DMR, respectively).

The increase in variance explained by DMRs com-

pared to individual SMPs in both panels was striking,

possibly due to the difference in the numbers of

Fig. 1 Distribution of 122 Eurasian accessions and 148 Swedish

accessions used in separate redundancy analyses of methyla-

tion variation [redundancy analysis (RDA)]. (a) Eurasian acces-

sions from Schmitz et al. (2013) are coloured by the first

principle components of neighbourhood matrices (PCNM) vari-

able, which describes spatial structure between samples. These

samples are shown with isothermality (defined as the average

daily variation in temperature relative to the seasonal variation

in temperature) which explained the most single-nucleotide

methylation polymorphism (SMP) variation in an RDA analy-

sis. (b) Swedish samples from Dubin et al. (2015) coloured by

the first PCNM variable as in (a). These samples are shown

with annual precipitation which explained the most SMP varia-

tion in an RDA analysis.

Table 2 Climate variables and the percentage of single methylation polymorphism (SMP) variation they explain in redundancy anal-

ysis (RDA) full models. The percentage explained was calculated as the sum of the absolute correlations of a climate variable to each

RDA axis and normalized by the total amount of variation explained by each axis (e.g. the eigenvalues). The top 10 climate variables

are shown for each panel

Eurasian panel Swedish panel

Climate variable

Per cent of SMP

variation explained Climate variable

Per cent of SMP

variation explained

Isothermality 7.39 Annual prec. 6.08

Photosythetically active radiation (PAR)

in summer quarter

7.18 Prec. of wettest quarter 6.04

Annual mean temperature 7.09 Prec. of coldest quarter 6.01

Mean October temp. 7.06 Prec. of driest month 6.01

Min. April temp. 7.05 Prec. of driest quarter 6.01

Prec. seasonality 7.00 Prec. of warmest quarter 6.00

Mean April temp. 6.99 Isothermality 5.98

Max October temp. 6.99 January prec. 5.98

Prec. Of driest mo. 6.98 July prec. 5.97

Max January temp. 6.94 October prec. 5.96

Min. October temp. 6.94 Photosythetically Active Radiation

(PAR) in summer quarter

5.96

Mean temp. of coldest quarter 6.93 Aridity 5.89

Mean January temp. 6.90 April prec. 5.84

Max April temp. 6.89 Prec. of warmest month 5.74

Growing season length 6.89 Prec. seasonality 5.67

Prec. of warmest quarter 6.85 Mean temp. of wettest quarter 5.49
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response variables analysed in the models (e.g. 182 090

SMP sites vs. only 38 443 C-DMRs in the Eurasian

panel full model). To test the effect of sample size, we

randomly selected 38 443 SMPs and ran the RDA, and

repeated the procedure 1000 times. Results from this

analysis were nearly identical to those from the full

data set, indicating that the observed patterns were not

caused by the difference in the sample sizes.

Epigenetic variance explained by climate depends on
methylation and genomic context

After considering the global methylation association

with climate, we subdivided SMPs depending on their

methylation (CG, CHG, or CHH) or genomic context

according to gene annotation (promoter, gene body,

transposable element or intergenic SMP). We then

assessed the explanatory power of the first canonical

RDA axis by a permutation method (see Methods). The

results from the first canonical RDA axis, which

explains the greatest portion of variation in the

response, illustrate different impacts of genomic and

epigenomic contexts (Fig. 2). In both panels, CHH

methylation and transposable element SMPs were

strongly enriched on the first RDA axis.

Indeed, SMPs with the strongest loading on the first

canonical RDA axis are overwhelmingly in the CHH

context (Fig. 3A and D). In fact, 999 of the top 1000 cli-

mate-associated SMPs in the Eurasian panel and all 1000

in the Swedish panel were CHH polymorphisms. In con-

trast, the canonical axis 2 (recall all axes are orthogonal)

is enriched for CG polymorphisms in both panels,

whereas RDA axis 3 is most associated with CHG poly-

morphisms (Fig. 3). These consistent associations in

methylation context also have functional implications;

CHH methylation is mostly associated with transposable

elements, while CG methylation is most prevalent in or

near genes. We also compared how the proportion of

variance explained by each axis varied by methylation

context (Fig. S1, Supporting information). Notably, CHH

methylation has a stronger loading on the first few axes

of variation, while CHG and CG methylations have

lower loadings on the first axes but higher loadings on

subsequent axes. This pattern is most evident in the Eur-

asian panel (Fig. S1A, Supporting information).

CG-DMRs are enriched in terms relevant for local
adaptation and potentially affect gene expression

We investigated whether genes overlapping with DMRs

that are highly associated with climate and space vari-

ables (i.e. SMPs or DMRs in the 99th percentile of load-

ings on a given axis) were enriched for specific GO

categories using AGRIGO (Du et al. 2010). We examined

enrichment in the Eurasian panel using the full RDA

model (climate + space). We found that no significant

GO terms were identified in genes overlapping C-DMRs

in either the promoter or gene body region. In contrast,

genes overlapping with CG-DMRs in the full model

were enriched for a variety of GO terms, including ones

relating to response to abiotic stimulus, reproduction,

development, and metabolism (Table 4). There was no

enriched GO term for C-DMRs or CG-DMRs from the

Swedish panel.

Gene expression correlates with climate-DMRs

One potential consequence of climate-associated DNA

methylation difference is gene expression variation. We

thus examined the expression variation of genes found

in DMRs. Expression consequence of DNA methylation

can vary according to the genomic context where DNA

methylation occurs. For example, methylation of regula-

tory regions tends to suppress gene expression, while

methylation of gene bodies is associated with increased

level of gene expression. To assess the extent DNA

methylation variation influences gene expression varia-

tion, we first computed the overall and absolute correla-

tion between gene expression and DNA methylation of

genes found in climate C-DMRs and CG-DMRs based

Table 3 Differentially methylated region (DMR) methylation variation explained by redundancy analysis (RDA) in Eurasian and

Swedish panels. Significance was assessed similarly to Table 1

Data sets Response variables

Full Model Space-adjusted Model

(Climate + Space)

Adj. R2 P-valueAdj. R2 P-value

Eurasian panel

Schmitz et al. (2013)

C-DMRs 0.07 0.002 0.03 0.182

CG-DMRs 0.05 0.010 0.03 0.170

Swedish panel

Dubin et al. (2015)

C-DMRs 0.16 0.001 0.09 0.001

CG-DMRs 0.18 0.001 0.09 0.001
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on whether they overlapped with a gene promoter or

gene body region (Table 5). C-DMRs in both panels had

a mean correlation near 0 while the absolute correla-

tions were near 0.1 in both regions, indicating similar

numbers of DMRs with positive and negative associa-

tions with expression. In contrast, CG-DMRs were on

average positively associated with expression when

located within gene bodies, as expected. The average

absolute correlation between methylation and

expression was generally stronger in climate-associated

DMRs compared to the genomic average.

Genes with genotype by environment (G 9 E)
interactions are enriched for climate-associated SMPs

Genes with variable responses to abiotic stress depend-

ing on genotype (G 9 E) may be an indication of natu-

ral selection towards local climate conditions. A recent

(A) (B)

(C) (D)

Fig. 2 Enrichment analysis of variance explained by different subsets of single-nucleotide methylation polymorphismS (SMPs) in the

Eurasian and Swedish panels. The y-axis shows fold enrichment, which is the amount of SMP variation (measured by eigenvalue)

explained by the first redundancy analysis (RDA) axis divided by the average amount explained in 1000 permuted data sets. Grey

dots correspond to the null data sets for each category, while large dots are the observed estimates. (A, C) Fold enrichment of differ-

ent methylation contexts in Eurasian and Swedish panels, respectively. (B, D) Fold enrichment of different genomic categories accord-

ing to TAIR 10 gene and transposable element annotations for Eurasian and Swedish panels, respectively.

© 2016 John Wiley & Sons Ltd

ASSOCIATIONS BETWEEN METHYLATION AND CLIMATE 1831



study by Lasky et al. (2014) found that genes in

A. thaliana with different expression responses to cold

and drought conditions depending on genotype had

more genetic polymorphisms in promoter regions and

stronger associations with climate compared to stably-

expressed genes. We analysed these same genes to

determine whether climate associations with methyla-

tion loci were stronger near these genes compared to

other genes given that methylation can also have a

strong effect on expression. Specifically, we compared

the model loadings of methylation loci within 10 KB of

G 9 E genes to random sets of loci (Table 6). While C-

DMRs and CG-DMRs did not have stronger climate

associations near G 9 E genes, the second RDA axis of

the SMP model (primarily CG methylation) had a stron-

ger average loading than all random sets of genes

(P < 0.001) in both cold and drought G 9 E gene sets

as well as both Eurasian and Swedish panels. This

analysis, along with the previous observation that CG

SMPs overall association with climate, suggests that

methylation as well as genotype may be relevant for

local climate adaptation in gene expression.

Discussion

The recent whole-genome methylation maps of

A. thaliana (Schmitz et al. 2011; Dubin et al. 2015) pro-

vide rich opportunities to investigate the associations

between ecological variability and epigenetic variability.

However, to date little is known about the role of DNA

methylation in adaptation to environment (but see

Dubin et al. 2015; Platt et al. 2015). As a first step to

understanding the role of DNA methylation variation

in local adaptation, here we examined how genetic and

epigenetic variations are associated with climate and

spatial variables in two large data sets.

(A) (B) (C)

(D) (E) (F)

Fig. 3 Top redundancy analysis (RDA) axes are enriched by distinct methylation contexts. The x-axis represents quantiles of the data

ordered by decreasing loading for each single-nucleotide methylation polymorphism (SMP). The y-axis represents the proportion of a

given methylation context in each quantile. Thus, curves above a 1:1 line indicate an overabundance of that methylation context for a

given quantile. (A–C) CHH, CG and CHG are enriched for RDA axes 1, 2 and 3 in the Eurasian panel. (D–F) CHH, CG and CHG are

enriched for RDA axes 1, 2 and 3 in the Swedish panel, respectively.
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Our analyses illustrate that spatial gradients in tem-

perature and precipitation are associated with a signifi-

cant portion of epigenomic variation across the native

range of Arabidopsis (in the Eurasian panel), as well as

at the regional scale (in the Swedish panel). The relative

associations of climate variables with genetic vs. epige-

netic variation appear to depend on the geographic

scale considered as well as sample size. For example,

an earlier study (Lasky et al. 2012) found that climate

and geography explained substantial fraction of genetic

diversity (22%) in a panel of Arabidopsis accessions

across Eurasia, while in our Eurasian panel the amount

of SNP variation explained was only 32% of the previ-

ous value. This discrepancy may be due to the differ-

ence in the number of genotypes used (N = 1003 in the

previous study vs. N = 122 in the current study, respec-

tively). We experimented with different reduced combi-

nations of climate and spatial variables and found it

had little effect on the amount of diversity explained,

suggesting that differences in that part of the statistical

model is unlikely to account for the difference in

explanatory power.

Here, we found stronger climate associations for

Swedish SMPs compared to SMPs in the Eurasian

panel, even after partialling out spatial variables. This

finding may suggest that genetic and epigenetic mech-

anisms of local adaptation may involve a larger portion

of the genome in Sweden. Additionally, climate is

likely to be highly spatially structured at the large

scale (Eurasia) but less so at the regional scale (Swe-

den). Furthermore, mechanisms of local adaptation

may be restricted geographically (Fournier-Level et al.

2011) such that global models obscure patterns occur-

ring within regions (Lasky et al. 2015). It is also notable

that similarly disproportionately stronger climate asso-

ciations were found in the Scandinavian SNPs com-

pared to populations in other regions (Lasky et al.

2012).

Table 4 Gene ontology enrichment analysis on Eurasian panel

associates CG-DMRs with genes. Fold enrichment is the pro-

portion of genes in the outlier data set associated with the GO

term divided by the proportion of genes in the background

associated with the GO term

GO Category

Fold

enrichment

False-

discovery

rate

Cell cycle 2.53 0.003

Post-embryonic development 1.96 0.004

Protein modification process 1.80 0.004

Regulation of gene expression,

epigenetic

2.75 0.007

Developmental process 1.64 0.008

Multicellular organismal development 1.66 0.008

Multicellular organismal process 1.63 0.010

Cellular component organization 1.66 0.010

Biological regulation 1.53 0.010

Macromolecule modification 1.62 0.016

Protein metabolic process 1.53 0.016

Cellular developmental process 1.95 0.017

Regulation of biological process 1.51 0.021

Cellular protein metabolic process 1.53 0.021

Catabolic process 1.72 0.021

Cell differentiation 2.01 0.025

Reproduction 1.65 0.033

Response to abiotic stimulus 1.63 0.033

Regulation of biological quality 1.78 0.041

Anatomical structure development 1.54 0.041

Reproductive process 1.62 0.046

Homoeostatic process 2.47 0.048

Macromolecule metabolic process 1.35 0.048

Hydrolase activity, acting on acid

anhydrides, in

phosphorus-containing

anhydrides

1.96 0.042

Hydrolase activity, acting on acid

anhydrides

1.93 0.042

Pyrophosphatase activity 1.96 0.042

Receptor activity 4.97 0.042

Nucleoside-triphosphatase activity 1.94 0.042

Table 5 Correlations between DMRs and gene expression. The average and absolute average correlation between methylation and

expression for each climate-associated DMR that overlapped a gene body or promoter region compared to the genomic background

correlation. We only considered DMRs that strictly overlapped a single promoter or a single gene body region. NA is listed where

there were no genes to analyse

Panel DMR Region

Climate

correlation

Absolute climate

correlation

Genomic

correlation

Absolute genomic

correlation

Eurasia C-DMR Promoter 0.000 0.111 �0.002 0.092

Eurasia C-DMR Genebody �0.071 0.099 0.012 0.090

Eurasia CG-DMR Promoter 0.055 0.055 0.003 0.088

Eurasia CG-DMR Genebody 0.050 0.103 0.020 0.088

Sweden C-DMR Promoter �0.001 0.085 0.004 0.073

Sweden C-DMR Genebody �0.041 0.126 0.017 0.077

Sweden CG-DMR Promoter NA NA �0.041 0.091

Sweden CG-DMR Genebody 0.044 0.071 0.029 0.078
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One common observation across the two panels is

that variation in DNA methylation at clusters of differ-

entially methylated sites between accessions, or DMRs,

are more strongly associated with climate variables than

individual methylation polymorphisms at the nucleo-

tide level. In both panels, C-DMRs as well as CG-DMRs

had approximately twice as much variance explained

by climate compared to individual SMPs and this pat-

tern could not be explained by differences in sample

sizes of DMRs and SMPs. Instead, combined epigenetic

variation of adjacent genomic positions (e.g. DMR) may

be of greater significance than variation at individual

CpG sites. Recent genomewide analyses often identify

regions of adjacent cytosines whose coordinated epige-

netic variation is critical in biological processes (e.g.

Elliott et al. 2015). If the combined influence of polymor-

phism at multiple loci is more functionally important, it

follows that computational approaches (e.g. association

studies) should model variation at multiple loci simulta-

neously. For example, many current association studies

and genome scans focus on variation at single nucleo-

tides independent of other loci (but see Segura et al.

2012).

Most (>99%) of the top 1000 climate SMPs on the first

RDA axis occurred at CHH sites in both data sets.

These climate SMPs were primarily located within

transposable elements. Their location suggests a possi-

ble functional link between TEs and adaptation to local

climate conditions. Indeed, several recent studies also

identified a strong association between temperature and

TE methylation (Shen et al. 2014; Dubin et al. 2015).

Specifically, temperature was associated with variation

at CHH in TEs, which were caused by segregating

SNPs within and surrounding CMT2, a TE-specific

methyltransferase (Zemach et al. 2013; Stroud et al.

2014). Notably, some normally silenced TEs can be

activated when Arabidopsis plants are exposed to pro-

longed conditions of extreme heat (Pecinka et al. 2010).

Thus, our observation that the first RDA axis for varia-

tion of SMP methylation occurs at TE CHH sites are

consistent with the role of CMT2 and TE methylation

on adaptation to climate changes. However, it is impor-

tant to note that the first axis of genomic variation in

eigenanalyses (e.g. PCA, RDA) is often also strongly

associated with population structure (Horton et al. 2012;

Lasky et al. 2012; Nordborg et al. 2005). Consequently,

the first RDA axis and the associated CHH variation

may reflect underlying population structure, rather than

a direct response to climate variables.

However, previous studies found significant associa-

tions between CHH methylation and temperature vari-

ables while accounting for population structure (Shen

et al. 2014; Dubin et al. 2015). In our study, we observe

the same pattern in the Swedish panel after accounting

for spatial structure, a proxy for population structure

(Sharbel et al. 2000; Platt et al. 2010). Experimental stud-

ies that manipulate methylation and test for methyla-

tion state-by environment interactions are warranted to

further understand the role of methylation in local

adaptation.

On the other hand, we found many climate- and

space-associated CG-DMRs within genic regions. Addi-

tionally, CG SMPs overall had the strongest climate

association overall and spread more evenly across RDA

axes compared to CHH methylation, which had the

strongest loading on the first axis. CG methylation was

also found to more strongly differentiate oak popula-

tions compared to other contexts (Platt et al. 2015). In

addition, Jiang et al. (2014) found that high salinity soil

induced a ~45% increase in differentially methylated

cytosine positions in the CG context compared to con-

trols, with the great majority of these methylation

Table 6 Climate associations are stronger in CG single-nucleotide methylation polymorphisms (SMPs) near genes with G 9 E effects.

With the average model loading for loci within 10 KB of genes with G 9 E interactions in either drought or cold conditions were

compared to the average loading of 1000 bootstrap replicates with the same number of loci as the observed data. Enrichment was

calculated as the observed average loading divided by the mean loading across replicates. P-values were calculated as the number of

replicates with a higher average loading than the observed data divided by 1000

Dataset Drought enrichment Drought P-value Cold enrichment Cold P-value

Swedish C-DMRs 0.988 0.547 0.953 0.808

Swedish CG-DMRs 0.736 0.74 1.046 0.372

Swedish SMPs RDA 1 0.541 1 0.660 1

Swedish SMPs RDA 2 1.523 0 1.267 0

Swedish SMPs RDA 3 0.961 0.944 0.929 0.999

Eurasian C-DMRs 0.944 0.8 1.032 0.265

Eurasian CG-DMRs 0.962 0.864 0.982 0.712

Eurasian SMPs RDA 1 0.736 1 0.965 0.972

Eurasian SMPs RDA 2 1.154 0 1.117 0

Eurasian SMPs RDA 3 0.956 0.997 1.044 0.005
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polymorphisms being inherited. The most climate- and

space-associated CG-DMRs in the Eurasian panel were

located in genes associated with several GO biological

terms. Particularly notable terms were related to abiotic

stimulus response, development and reproduction.

Based on known ecophysiological mechanisms of mois-

ture and temperature response, these GO terms are

good candidates for mechanisms of local adaptation to

climate. Nevertheless, enrichment of these GO terms is

not a conclusive validation of our results (Pavlidis et al.

2012) and it is important to follow up with experimen-

tal validation of loci putatively involved in local adapta-

tion.

Numerous recent studies have shown a genetic

basis for local adaptation to various climate condi-

tions (Hancock et al. 2011; Lasky et al. 2012; Long

et al. 2013). Our reanalysis of two separate epigenomic

data sets found broad similarities between the two

panels with respect to associations between DNA

methylation variation with climate, suggesting that

these differences may contribute to local adaptation.

A substantial amount of this methylation variation is

likely to due underlying genetic differences (Dubin

et al. 2015). However, epigenetic variation can be sta-

bly inherited in plants and thus may act as a further

heritable substrate available for adaptation (Becker et

al. 2011; Schmitz et al. 2011).
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d.org/resource/doi:10.5061/dryad.80442). In addition,
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sion sites, PCNM variables and RDA input files for R
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modeling.
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